Drink milk, glow green… what?

I saw an ad for Devondale long life milk on TV recently which really bothered me. You can watch it on Devondale’s YouTube here. It features a young girl, with a fluorescent green glow going about her daily activites at home and school. At the end of the ad, we are supposed to believe that she’s somehow taken on this green glow through drinking milk which contains preservatives.


I think it’s very misleading, and it makes me uncomfortable for a number of reasons.

  1. The prevalence of glow-in-the-dark radium/phosphorus products around 100 years ago has cemented the ‘green glow = radioactivity’ myth into popular culture. In fact, radium alone does not emit the green glow, it must be mixed with phosphorus and when the radium gives off alpha particles, it stimulates the emission of light from the phosphorus atoms. ‘Radiation’ (alpha and beta particles and gamma rays) is actually invisible. Most importantly though, NONE OF THIS HAS ANYTHING TO DO WITH MILK OR PRESERVATIVES.
  2. Devondale are piling on the parental guilt in this ad with the line “what are you feeding your kids?”  As if parents don’t get enough guilt trips from the media and society already, now Devondale want to scare them off letting their kids drink milk? Of all the drinks available for kids (or anyone) to consume, milk is probably the second healthiest option after water.
  3. Milk sold in Australia, including long life varieties, DOES NOT EVEN CONTAIN PRESERVATIVES!
  • The shelf life of milk is extended by increasing the temperature at which it is pasteurised, and the environment in which it is packaged. By heating to a higher temperature, and packaging in a sterile environment, there is a huge reduction in the amount of organisms in the milk which over time contribute to its ‘going off’. Long life milk products do not contain preservative additives to extend the shelf life.
  • I’m not an expert on the food standards code but my interpretation of the relevant section is that antioxidants and preservative additives are permitted in milk, so long as they are included in the ingredients list on the container. I conducted a small survey at a local supermarket of long life milk products, and none of them listed any preservatives. Whether they are not used because they are simply not required (due to the high temperature treatment), or consciously excluded due to consumer concerns is something that can only be answered by the dairy industry.


I do feel for the independent dairy producers, given the ongoing pillaging of their industry by the  supermarket milk wars, but this, and the ridiculous permeate marketing ploy, is a dishonest way of advertising their product. Not cool Devondale, not cool.

When is a chemist not a chemist?

The following is a post I wrote while participating in the course Science Media SpaceThe course aims to “provide scientists with the practical knowledge needed to use social media effectively” and is certainly worth signing up for if you’d like to improve your skills in this area. This post was aimed at an Australian audience and may not make sense to you, depending on your local variant of the English language!



My name is Renée, and I’m a chemist.


What picture do you have in your mind about my profession? Is it a person in a lab surrounded by test tubes and beakers? Or is it a person behind a counter dispensing drugs and medical advice?


Studies show* that 68% people associate the job title of ‘chemist’ with a person who dispenses drugs. Although the terminology varies around the world, in Australia, most people will use the word ‘chemist’ interchangeably with pharmacy or pharmacist. Indeed, in the past when it was common for pharmacists to compound and quality test their own medications, the two professions shared many similarities. Compounding pharmacists are now rare, but the shared name lives on. This can be quite frustrating for a ‘test tubes and beakers’ chemist, when you would love to talk about what you actually do for a living, rather than explain the difference between chemistry and pharmacy.


Strategies to overcome chemist confusion
1. Be more specific when people ask what your job is. Rather than saying ‘I’m a chemist’, I prefer to say ‘I’m an analytical chemist’, or ‘I’m a fuel scientist’. This technique removes any ambiguity that comes with the word chemist. It also takes care of an annoying subset of people who know just enough about chemistry to be dangerous… The ones who when you do say ‘I’m a chemist’, smugly reply ‘organic or inorganic?’ As though the entire field can be delineated by these two outdated subdisciplines. I think I’ve gone off track a little…
2. Specifying a subfield may work for individual chemists communicating to a captive audience, but what about a collective group of chemists? Universities and professional chemist’s organisations such as the Royal Australian Chemical Institute or the American Chemical Society tend to overcome this by avoiding the use of the word ‘chemist’ in favour of ‘chemistry’ or ‘chemical’ which are not associated with pharmacy.


Is this even a problem?
Do chemists even have a right to feel aggrieved that they happen to share one synonym of their profession with a different, albeit slightly related profession? Maybe they don’t, or maybe I’m the only one!
Is this going to cause any life or death mix ups? No.
Is this just another example of intellectual elitism? Maybe.



*Study was conducted via twitter poll. May not be representative of population. Actual number may not be correct. All respondents mentioning ‘Breaking Bad’ were discarded.

Whitesides say ‘Analytical Chemistry’ is best chemistry!

Fellow analytical chemist and chemblogospherian Marc, recently brought this article from renowned Harvard chemist George Whitesides to my attention. Here’s my response, and there’s also an excellent post over at The Curious Wavefunction.

I don’t think this article is as bad as some people were saying, actually I don’t think it’s bad at all. Certainly he got this analytical chemist onside in the first couple of paragraphs with these choice quotes:

Measurement (or “analysis,” which arguably includes both measurement and interpretation) is the axle around which this wheel turns. So, everything in science is—in this sense—“analytical”.

Analytical chemistry […] is essential to the chemical enterprise.

So there you go. Analytical chemistry is great. End of post.

Or not.

I guess that Whitesides, in his eminence, has earned the right to pontificate on topics of his choosing and journal editors are clearly willing to grant him page upon page of column inches to do so. The article may be a little long-winded and in places quite fanciful, it’s not like he’s chucking a Breslow here guys. It’s basically a mashup of serious commentary, plugging of his own current research interests, and wild speculation. He also isn’t (as some suggested) advocating ‘black box’ analytical chemistry either, and stresses that analysis is equal parts measurement and interpretation.

Whitesides is certainly not saying that synthetic chemistry should no longer be done, or it is no longer a worthwhile pursuit. It’s undeniable that the bulk of the successes of chemistry in the last couple of centuries have been built on synthesis. Having said that, I don’t think it’s unreasonable to suggest that the emphasis could be shifted slightly away from synthetic chemistry. Currently, at my undergraduate and postgraduate institutions, synthetic chemists comprise roughly 50% and 45% respectively of faculty and I don’t think this distribution is appropriate for addressing the ‘grand challenges’ of chemistry in the future.

My personal opinion on the future of analytical chemistry as a discipline, is that it may not continue to be a useful descriptor for a subset of chemical studies. In fact, I would not be surprised, or even unhappy if in the future ‘analytical chemistry’ as we know it today ceases to exist. My reasons for saying this is aligned with what I think Whitesides is saying in this article. That is, that analytical chemistry is such an essential part of almost all of the chemical subdisciplines these days, that it will become absorbed into and assimilated with existing (or new) fields. For example, in my current role, I alternate between calling myself an analytical chemist and a fuel scientist, and the reality is that I am both. I am a fuel scientist, who uses the tools and techniques (GC, LC, MS) developed by the legacy of analytical chemists before me. And in doing so, I am not too different from the synthetic chemist who uses conducts analysis by NMR and IR, or the materials chemist who analyses with XRD and AFM. The only distinction being that I am not ashamed, indeed I am proud, to be a practitioner of metrology.\

May analysis no longer be the ugly duckling of the chemical sciences. Viva la anal. chem.!

The CERN Song


For Upulie, (and all of the team, friends and followers of Real Scientists).
To the tune of Tina Arena’s Burn.




Do you wanna be a particle, and collide?
Do you wanna be a neutrino, faster than light?
Do you wanna be a physicist, and win the Nobel?
Do you wanna meson to muon?
Do you wanna plasma, quark and gluon?
Or whoosh around the 27 k tunnel?



Be anyone you want to be
Bring to life your fantasies
But I want something in return
I want you to CERN, CERN for me baby
Like a candle in my night
CERN for me
CERN for me



Are you gonna be a proton, and get smashed?
Are you gonna be a boson, and give mass?
Or go to Scotland and touch Higgs’ face?
Are you gonna be an strange, charm flavour quark ?
Are you gonna tell us, what is matter dark?
Or a test
Of supersymmetry


Ill lay down on your standard model
Offer up my safety goggles
But in return
I want you to CERN
CERN for me baby
Like a candle in my night
Oh CERN, CERN for me, CERN for me
I want you to CERN baby ooh


Laugh for me
Cry for me
Pray for me
Lie for me
Live for me
Die for me
I want you to CERN
CERN for me baby
Like a candle in my night
Oh CERN, CERN for me, CERN for me



Who’s a Real Scientist? I’m a Real Scientist!

For one whole week starting 7 PM tomorrow night (AEST) I will be tweeting from the curated twitter account @realscientists. Real Scientists is a totally awesome rotational twitter account run by totally awesome twitter people which you can find out more about here. So far there have been loads of really interesting scientists and science-related people tweeting for Real Scientists, so I have some clown-sized shoes to fill.

The account currently has in excess of 2,600 followers, which is close to a bazillion more followers than I have on my regular twitter account, @reneewebs (eep!). If, perchance, you happen to follow me but not Real Scientists, consider this your first official warning.

I think I am the first chemist to have the honour of tweeting for Real Scientists, so twittersphere – prepared to be chemified! Follow my adventures in chromatography, from the dizzying highs of a time-of-flight mass spectrometer flight tube to the chillying lows of cryogenic modulation.

See you on the twit-side!

#ChemMovieCarnival – On teenage angst and the importance of a great science teacher

Here we go with another of the bloggy doggy’s great Chemistry-themed carnivals, and this time it’s the #ChemMovieCarnival.

Although it’s not really chemistry-related, I’ve chosen a scene from the 2001 Richard Kelly cult classic, Donnie Darko. This is possibly my most favourite movie ever, definitely top three, and I’ll even admit to enjoying the director’s cut more than the original film.

The really short (~20 s) scene in question involves the main character Donnie (Jake Gyllenhaal) walking home from school with the new kid Gretchen (Jena Malone) and they have a conversation about an assignment Gretchen has been set by the science teacher Professor Monnitoff (Noah Wyle).

Gretchen Ross: Look, I should go. For physics, Monnitoff is having me write this essay. Greatest invention ever to benefit mankind.

Donnie Darko: It’s Monnitoff. But that’s easy. Antiseptics. Like the whole sanitation thing. Joseph Lister, 1895. Before antiseptics, there was no sanitation, especially in medicine.

Gretchen Ross: You mean soap?

Leaving aside any factual errors in Donnie’s statement, you can see from the screencap below that Gretchen has this completely incredulous look on her face, awash with teenage attitude.  I think part of the reason I was so drawn to this movie initially is that the interactions between the characters are so authentic and believable against the backdrop of some out-and-out batshit craziness.


I really like this scene, and the question it poses, because although I’d largely prefer to forget the bulk of my high school years, I was lucky enough to have had one or two passionate teachers like Monnitoff (although nowhere NEAR as good looking) who would set assignments or class discussions around these kind of ‘big questions’ topics. For me, it was these types of lessons, early introductions to philosophy of science, critical thinking and the scientific method which really propelled me towards science as a career.

The importance of a strong grounding in the sciences in school is something I feel can’t be overestimated. The science teacher in this movie is an ex-academic, and the students find him approachable and knowledgeable. He is happy to take Donnie’s questions after class, and also lends him a book which plays a critical part in the plot of the movie. In another scene with Donnie and Prof Monitoff, we see the portrayal of the unfortunate position of public school science teachers in the US. Donnie is a bright and curious young man looking for guidance from a teacher, but on the question of God and religion, Monitoff is forced to end the discussion for fear of being fired. It’s unlikely that Kelly’s intention was to demonstrate the importance of an enthusiastic science teach on young minds, rather it is a by-product of his careful character development in this film.


Another ‘big question’, and one of the main themes of the film is time travel. But I’ve already not talked about chemistry in this post, so I’m certainly not going to not talk about physics as well!

Papes for the Peeps – Fuel Oxidation #1

The latest research article to come out of my group is now available online in the American Chemical Society journal Energy and Fuels (paywalled). The title “Oxidation of neat synthetic paraffinic kerosene fuel and fuel surrogates: quantitation of dihydrofuranones” is probably more than enough to put off any non-specialist reader, but I think it is a reasonable summation of the entire paper. So in breaking down the title, I will explain what the paper is all about.

 Oxidation: The word ‘oxidation’ can be used to describe lots of different chemical reactions, and will mean different things to people even within different disciplines of chemistry. In the context of this work, oxidation refers to the reaction of the molecules in fuel with oxygen from the atmosphere, or dissolved in solution, to incorporate the oxygen into the structure of the molecules.


Fig.1 An example of one type of oxidised fuel molecule.

Fuels oxidise naturally over time, but generally get used up (burned in an engine) long before it could become a problem. However, oxidation, like most chemical reactions, happens much more quickly at high temperatures. A lot of modern aeroplane and ships are designed in such a way that the fuels are cycled through hot areas of the engine or fuel system before they get burned. This means that the fuels can become oxidised within the fuel system in a matter of minutes or hours. The oxidation reactions lead to the formation of solid deposits and gums which can damage engine parts, making it run less efficiently and require more maintenance.

Neat:Neat’ is one of those weird words that means something completely different in the scientific vernacular to regular conversation. Rather than meaning ‘nifty, good, or tidy’, the scientific ‘neat’ refers to something being pure, unadulterated, or unblended.

It is quite common for fuels to be blended with other fuels or additives before use, for lots of different reasons (I will talk more about this in the next section). But the fuels that we used in this study were used ‘as is’ – unblended and more or less pure. This makes it a little easier for us to investigate, eliminating the introduction of possible unknown quantities into the fuel.


Synthetic Paraffinic Kerosene Fuel (SPK): SPK is a generic term for jet fuel which has been created from a non-crude oil source, usually via one of two processes; synthesis from carbon monoxide and hydrogen gases (Fischer-Tropsch process), or processed biological oils and fats.

  • Synthetic: This really just refers to the fact that these fuels are not traditional fossil fuels, made from dead dinos and dug up out of the ground.
  • Paraffinic: Paraffin is just another name for hydrocarbon, the molecules which make up fuels.
  • Kerosene: Kerosene is a generic name for a mixture of hydrocarbons with characteristics which makes it suitable for use as an aviation fuel.

Fuel Surrogates: This is a term we use for mixtures that resemble a fuel in a particular way, but have been simplified in order to study them in more detail. Fuels can contain over a million different chemicals, so it’s often necessary to create ‘model fuels’ from a reduced selection of chemicals which are far less complex and easier to analyse.

In this study we’ve used two different fuel surrogates. One is a single component surrogate, one pure compound which we studied to determine if the oxidation was dependent on reaction with other molecules in the fuel. Turns out it’s not, all you need is one hydrocarbon, oxygen and heat. The other surrogate has nine components, representing the main classes of compounds found in real fuels. This was able to give us a better idea of the range of chemicals that are formed when a real fuel is oxidised.

Quantitation: Quantitation is just a fancy way of saying ‘measured with a known amount of accuracy and precision’. Generally, chemical analysis can be qualitative (what is it?), quantitative (how much is there?), or both. In this paper we have used some different techniques to try and quantify the compounds of interest

  • Fourier Transform Infrared Spectroscopy (FTIR)

An FTIR instrument uses molecular vibrations to look at the different functional groups within molecules. Generally the functional groups that exist in oxidised compounds would be well suited to FTIR analysis, but in this case the complexity of the fuel mixture coupled with the very low concentrations of the compounds of interest makes it quite difficult to get accurate determinations. This is why the 2 separation techniques described below are more useful.

  • High Performance Liquid Chromatography (HPLC)

A liquid chromatograph is often used for quantifying lots of different chemicals and has a huge range of applications across many industries. In this case the HPLC was used purely for its separating power, in order to facilitate quantitation with another technique (GC-MS, below). The interactions that occur between the fuel sample and the instrument allow the compounds of interest to be (mostly) separated from the fuel matrix.

  • Gas Chromatography-Mass Spectrometry (GC-MS)

GC operates on the same principle as HPLC above – that is, interactions between the instrument and the sample allow for separations of mixtures to occur. Here, GC is really useful because the separations are very high quality and made even better by the rough separation already carried out by the HPLC. The coupling of a GC to another instrument (mass spectrometer, MS) increases the power even more as it allows for fast and simple identification of the molecules in the mixture.


Dihydrofuranones: Now, I’ve saved the most exciting part for last. A dihydrofuranone (or furanone for short), is a molecule which arises when a hydrocarbon becomes oxidised and eats its own tail, forming a cyclic molecule. In the example below, the yellow-coloured section could represent any hydrocarbon chain. These types of molecules have only been seen in fuels before where the oxidation temperature was much higher, or the oxidation time was much longer.


Fig. 2 Generic structure of a furanone molecule.

So what, I can hear you say, so what? There are two ‘so what’ aspects to this.

  1. These furanones have two oxygen atoms very close to each other, incorporated into the molecule. Normal unoxidised fuel hydrocarbons have no oxygen molecules in them. The presence of oxygen atoms in the molecule like this tends to attract water into the fuel from the atmosphere, particularly in humid environments. When water gets all friendly with the furanone molecules and becomes incorporated into the fuel, this is really bad news. Water in fuel can form ice crystals, which block the fuel system, and has been known to cause crashes. It also increases wear and corrosion, so is generally a very undesirable thing to have in your fuel and you definitely don’t want stuff in your fuel which increases the susceptibility to take up water.
  1. The oxidation reactions don’t stop once the furanones are formed. The fuel keeps on reacting with itself and creating new molecules which then go on to form insoluble particles and gums in the fuel. This is another way that engine blockages and wear can occur. So if we can figure out the mechanism of how the gums and particles are formed, we can work out ways to stop it happening in the first place.

So there you go, a whole scientific paper explained using only the title. The next paper I’m working on is about trying to figure out faster and more accurate ways of measuring oxidation products in fuels.

Chocolate Chip Cookies – Science Style

Because we can just never get enough chemophobia, See Arr Oh from the Just Like Cooking blog has alerted the chemblogosphere to some more ridiculous scaremongering about the chemicals in our food. He has rightfully ridiculed the advertising and you should go there and read it (and about what the pseudonymous dog has for breakfast himself!).

However, the post made remember something I did ages ago (maybe 6-7 years?) which I had completely forgot about and I will share with you below:


The biscuits made from this recipe actually won me a baking competition at the place I worked at the time. Although of course they were tremendously delicious, I attribute my win to the fact that I displayed this recipe along with the cookies, and the judges all had chemistry degrees. A lesson in knowing your audience 🙂

***Update 13-01-2013

Reader @markemer has pointed out that vanilla essence (reagent #7) is not pure vanillin, and usually is a solution containing a number of other compounds, including water, ethanol, and methyl carbinol. Thanks Mark, corrections always welcome.

Chemical Free Cookware Redux

Following on from my last post, I decided to email Baccarat, the company selling the ‘chemical free’ cookware range, Bio+. My email is reproduced below. I tried my darnedest not to be snarky, but I fear I am a self-confessed, born smart-alec and I find it impossible to fully suppress.

Dear Sir/Madam

I recently came across some advertising for the new Baccarat cookware range named Bio+, and there were a couple of things about the product marketing that I found a little confusing.

1. The products are marketed as ‘chemical free’.

I recall from my primary school science classes that all matter in the universe is made from chemicals. I’m fairly certain that the materials that your cookware is made from are also chemicals (perhaps iron or aluminium, carbon, oxygen, hydrogen and others). If what you are trying to say is that the cookware is free of Teflon or other fluorinated molecules, I think it would be more appropriate, and importantly, more accurate, to say this instead. To claim the products are ‘chemical free’, is simply untrue and chemophobic.

2. The use of the prefix ‘Bio’.

I am curious as to the reasoning behind the use of ‘bio’ in the product name. Is there anything in particular about the manufacture of the cookware that is biological? Perhaps biologically (plant, algal) derived source materials? Biorefined metals? I do hope that there is a basis for using this prefix and would be very interested to know what it is, and that it is not just greenwashing.

Thank you for reading and I look forward to your reply.

And the reply I received today:

Good Morning Renee,

Thank you for your enquiry.

I believe you would be referring to matter being a chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. This is different from this, which is a natural occurrence, and the traditionally used term ‘chemical’ which is a compound or substance that has been purified or prepared, esp. artificially.

The Bio+ range is simply a name that was chosen for this range due to its chemical free ceramic interior (PFOA and PTFE free), making it a healthier choice. Ceramic coatings are environment friendly, pollution free. The body provides effective and even heat distribution reducing cooking times and saving energy fuel. Non stick, easy clean and chemical free.

I would like to take this time to thank you for your comments, I have passed them on for review.

Kind Regards,

[name redacted]

The person who replied to me has helpfully provided a number of Wikipedia links, to help me understand what constitutes an atom. Of course, they weren’t to know that I have a reasonable grasp of this area, mainly thanks to my double major in chemistry which funnily enough, did actually go over this stuff a little bit.

I will have to concede that this person has a basis for saying that the colloquial meaning of ‘chemical’ is generally something which has been processed or refined in some manner, and I guess I wasn’t clear enough in my email in trying to get across my point that *everything* is made from chemicals. This is really the crux of the problem; even though they have (I hope) thought a little bit about what I wrote in my email, and at least looked at some pertinent Wikipedia entries, the false delineation of natural=good=element/artificial=bad=chemical, still stands in their mind.

The second point was, I feel, addressed in a more flippant manner. It seems that the use of ‘Bio’ in the product name is indeed greenwashing, and they may have been better off using ‘enviro’ or something like that. Their claim that ceramic coatings are more environmentally friendly seems plausible to me, and I think the argument could be made that their manufacture is less energy and resource intensive (although definitely not ‘pollution free’ as they claim) than that of fluoropolymers. Although my knowledge in the area is really limited, and I would be happy if an industrial chemist could correct me.

It’s not all bad though, I am very grateful that someone took the time to respond to my query and I am really glad that my comments have been ‘passed on for review’ (I can only take it in good faith that they have been). The fight against chemophobia goes on!

Chemical Free Cookware

On a recent stroll down a shopping strip while I was away from home for a conference, I came across this startling advertisement:


You can imagine my shock and amazement that the cookware company Baccarat had not only come up with a chemical-free ceramic material, but then also managed to construct a frying pan from it. I quite enjoy cooking, and tend to covet expensive and unnecessary kitchenware items, however I’m not sure this one will be making it on to my post-Christmas sale shopping list this year seeing as I can only assume is made primarily from photons, and I already have plenty of those lying around.

Curiously, the Bio+ range seems to be absent from the Baccarat website, but several online retailers are flogging these frying pans and offer a little more insight into what they are actually trying to say when they claim the  ‘chemical free’ label. The use of the prefix ‘Bio’ is total greenwashing, because there is absolutely nothing about the use or manufacture of these items that is in any way biological. These frying pans, like many others, are actually made of aluminium (an element and chemical, gasp!), with a Bakelite handle (a polymer resin made primarily from the chemicals phenol and formaldehyde*) and a ceramic (usually a crystalline oxide, made from… you guessed it – chemicals!) cooking surface. What they are actually trying to get at when they say ‘chemical free’, is that these pans are not coated with PTFE (Teflon), the fluorinated polymer we associate with non-stick cooking surfaces. Whilst there have been concerns about the safety of these products, if you follow the manufacturer’s instructions in terms of the temperature you use them at, and use an exhaust fan or rangehood while you’re cooking, then they don’t pose a health risk. There are plenty of Teflon-free cookware items available on the market if you prefer not to use them for whatever reason. Most chefs don’t use Teflon pans, and instead favour cookware made from cast iron, stainless steel, copper and aluminium. The reasons being that these materials develop a better fond when cooking, are more hard-wearing for increased longevity, tolerate much higher temperatures and can be used with metal utensils.

As a side note, I also found it a quite hilarious coincidence (or maybe not), that celebrity chef Pete Evans of ‘activated almonds and alkalised water’ fame, is one of the faces of Baccarat cookware.  Clearly, a man who thinks water containing vinegar is alkaline has much to learn about basic (pun intended), primary school level chemistry and is an excellent choice for ambassador of this company.

*phenol and formaldehyde are two chemicals that you certainly want to take care with on their own,  in my laboratory these are both stored in special poison/carcinogen cabinets. However, once incorporated into the Bakelite resin they have reacted together to form a new, non-hazardous chemical structure and are effectively permanently trapped in that form within the resin.